Prediksi Cuaca Kota Jakarta Menggunakan Metode Random Forest

Studi Optimalitas

  • Zian Asti Dwiyanti Universitas Logistik dan Bisnis Internasional
  • Cahyo Prianto Universitas Logistik dan Bisnis Internasional
Kata Kunci: akurasi, prediksi cuaca, random forest, ROC-AUC

Abstrak

Abstrak

Prediksi cuaca berperan penting dalam berbagai bidang kehidupan, seperti pertanian, transportasi, pariwisata, dan mitigasi bencana. Kemampuan memprediksi cuaca secara akurat dan tepat waktu sangat berdampak dalam pengambilan keputusan yang cerdas. Kota Jakarta, sebagai ibu kota Indonesia yang padat penduduk dan memiliki aktivitas ekonomi tinggi, membutuhkan sistem prediksi cuaca yang handal untuk mendukung pengelolaan sektor-sektor tersebut. Studi ini bertujuan memprediksi cuaca di Kota Jakarta dengan menggunakan metode Random Forest dan data cuaca historis yang terpercaya dari website OpenData Jakarta. Evaluasi menunjukkan bahwa model Random Forest memberikan prediksi cuaca yang baik, dengan akurasi, presisi dan recall sebesar 0.71, F1-score sebesar 0.70, serta ROC-AUC sebesar 0.92. Metrik evaluasi ini menggambarkan kinerja model dalam mengklasifikasikan cuaca dengan baik, mempertimbangkan keakuratan, ketepatan, dan keseimbangan antara presisi dan recall. Hasil prediksi cuaca tersebut mencakup kemampuan model untuk mengidentifikasi dengan benar berbagai kelas cuaca, dan memberikan informasi berharga dalam pengambilan keputusan terkait kondisi cuaca di Kota Jakarta.

Abstract

Weather prediction plays a crucial role across various life domains, including agriculture, transportation, tourism, and disaster mitigation. The ability to predict weather accurately and in a timely manner significantly impacts informed decision-making. Jakarta, as Indonesia's populous capital with high economic activity, necessitates a reliable weather forecasting system to support sector management. This study aims to predict Jakarta's weather using the Random Forest method and dependable historical weather data from the OpenData Jakarta website. Evaluation reveals that the Random Forest model offers favorable weather predictions, boasting an accuracy, precision, and recall of 0.71, an F1-score of 0.70, and an ROC-AUC of 0.92. These evaluation metrics epitomize the model's adeptness in effectively classifying weather, striking a balance between precision and recall. The weather prediction outcomes encompass the model's capacity to accurately identify diverse weather categories, thereby furnishing valuable insights for decision-making concerning Jakarta's weather conditions.

Diterbitkan
2023-10-17
Cara Mengutip
Dwiyanti, Z., & Prianto, C. (2023). Prediksi Cuaca Kota Jakarta Menggunakan Metode Random Forest. Jurnal Tekno Insentif, 17(2), 127-137. https://doi.org/https://doi.org/10.36787/jti.v17i2.1136