Perbandingan User-Based dan Item-Based pada Sistem Rekomendasi Film Kombinasi Teknik Reduksi Dimensi dan Clustering
Abstrak
Sistem rekomendasi mampu menghasilkan daftar film hasil personalisasi yang mungkin menarik bagi user dengan mempelajari kegiatan user dalam memberikan rating. Sistem rekomendasi diklasifikasikan dalam tiga pendekatan: Content-Based Filtering, Collaborative Filtering (CF), dan Hybrid Filtering. Pendekatan CF lebih popular dibandingkan dua pendekatan lainnya. CF memiliki dua model, yakni CF user-based (UB) dan CF item-based (IB). Namun, pada CF terdapat permasalahan yaitu waktu komputasi yang lama karena dimensi data yang besar, kelangkaan data dan akurasinya. Untuk mengatasinya terdapat dua tahap yang dapat dikombinasikan pada CF, yaitu reduksi dimensi menggunakan algoritma Singular Value Decomposition (SVD) dan clustering menggunakan algoritma K-Means (KM). Tujuan dari penelitian ini adalah melakukan perbandingan hasil akurasi antara sistem rekomendasi film yang menggunakan metode SVD-KM-UB dan SVD-KM-IB pada dataset MovieLens. Hasil yang didapatkan pada dataset MovieLens, metode SVD-KM-UB lebih unggul daripada metode SVD-KM-IB. Metode SVD-KM-UB mengalami persentase kenaikan pada seluruh variasi dengan peningkatan terbesar pada , yaitu sebesar 5836,4%.