Klasifikasi Kanker Kulit menggunakan Custom CNN dengan SMOTE-Tomek dan Optimizer Nadam

Kata Kunci: Klasifikasi Kanker Kulit; Citra Dermoskopi; Custom CNN; SMOTE-Tomek; Optimizer Nadam.

Abstrak

Abstrak

Deteksi dini kanker kulit sangat penting untuk meningkatkan harapan hidup, namun diagnosis konvensional seringkali subjektif. Berbeda dari penelitian sebelumnya, penelitian ini mengusulkan sebuah konfigurasi optimal yang menggabungkan tiga komponen kunci secara simultan: arsitektur Custom Convolutional Neural Network (CNN) yang ringan, penanganan ketidakseimbangan data menggunakan SMOTE-Tomek, dan optimisasi pelatihan dengan optimizer Nadam. Pendekatan terintegrasi yang dievaluasi pada dataset HAM10000 ini terbukti mampu mencapai efisiensi komputasi dan akurasi yang tinggi. Hasil eksperimen menunjukkan model mencapai akurasi validasi hingga 95.63% dan nilai F1-score ≥0.90, bahkan pada kelas minoritas seperti melanoma. Model ini juga berhasil diimplementasikan dalam aplikasi web dengan confidence score di atas 90%, membuktikan bahwa pendekatan yang diusulkan mampu memberikan solusi diagnosis yang objektif dan terukur untuk klasifikasi otomatis kanker kulit.

Kata kunci: Klasifikasi Kanker Kulit; Citra Dermoskopi; Custom CNN; SMOTE-Tomek; Optimizer Nadam.

Abstract

Early detection of skin cancer is critical to improving survival rates, yet conventional diagnosis is often subjective. This study develops an objective dermoscopic image classification system using deep learning. The proposed model utilizes a lightweight Custom Convolutional Neural Network (CNN) architecture, combined with the SMOTE-Tomek method to handle data imbalance in the HAM10000 dataset. The training process was optimized using the Nadam optimizer with a 90:10 data split and 64x64 pixel image inputs. Experimental results show the model achieved a validation accuracy of up to 95.63% and an F1-score ≥0.90, even on minority classes like melanoma. The model, successfully implemented in a web application with confidence scores above 90%, proves to be an effective solution for automatic skin cancer classification.

Keywords: Skin Cancer Classification; Dermoscopic Images; Custom CNN; SMOTE-Tomek; Nadam Optimizer.

Kata kunci: Klasifikasi Kanker Kulit; Citra Dermoskopi; Custom CNN; SMOTE-Tomek; Optimizer Nadam.

Biografi Penulis

Syafrial Fachri Pane, Universitas Logistik dan Bisnis International

Syafrial Fachri Pane is a lecturer and research assistant in the department of informatics engineering from Higher Education in Pos Polytechnic of Indonesia. Gaining a degree: Associate Degree in Informatics Engineering from Pos Polytechnic of Indonesia, Bachelor of Informatics Engineering from Pasundan University (Indonesia) in 2012 and Magister of Informatics Engineering from Bina Nusantara University (Indonesia). Research interests, teaching, professional experience, and so on. His research conducted in the field of Computer Science, Engineering, Physics and Astronomy Mathematics In addition to being a researcher, I am an assessor of BNSP (National Agency for Professional Certification) in the field of Database licensed by the Indonesian government, and assumes the position of head of student affairs, alumni and cooperation in Polytechnic Pos Indonesia

Diterbitkan
2025-12-31
Cara Mengutip
Talan, M. C., Pane, S., & Fathonah, R. N. (2025). Klasifikasi Kanker Kulit menggunakan Custom CNN dengan SMOTE-Tomek dan Optimizer Nadam. Jurnal Tekno Insentif, 19(2), 151-167. https://doi.org/https://doi.org/10.36787/jti.v19i2.2020